# Cardiac Glycosides from Antiaris toxicaria with Potent Cardiotonic Activity 

Li-Shian Shi, ${ }^{\dagger}, \|$ Yu-Ren Liao, ${ }^{\dagger}$ Ming-Jai Su, ${ }^{\S}$ An-Sheng Lee, ${ }^{\S}$ Ping-Chung Kuo, ${ }^{\dagger, \|}$ Amooru G. Damu, ${ }^{\dagger}$ Sheng-Chu Kuo, ${ }^{\ddagger}$ Han-Dong Sun, ${ }^{\triangle}$ Kuo-Hsiung Lee, ${ }^{\#}$ and Tian-Shung Wu*, ${ }^{*}, \perp$<br>Department of Chemistry, National Cheng Kung University, Tainan, Taiwan, Republic of China, Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China, Graduate Institute of Pharmaceutical Chemistry and Department of Pharmacy, China Medical University, Taichung 401, Taiwan, Republic of China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, Yunnan, People's Republic of China, and Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568

Received November 23, 2009


#### Abstract

An ethanolic extract of Antiaris toxicaria trunk bark showed potent in vitro cardiotonic effect on isolated guinea pig atria. Bioassay-guided fractionation of the extract led to identification of nine new cardiac glycosides ( $\mathbf{1}-\mathbf{9}$, named antiarosides A-I), antiarotoxinin A (10), and 18 known compounds. Their structures were established using MS and NMR spectroscopic studies, including homonuclear and heteronuclear correlation experiments. The ability of these cardiotonic compounds to produce positive inotropic action and their safety indexes were examined in comparison with those of ouabain, a classical inhibitor of $\mathrm{Na}^{+} / \mathrm{K}^{+}$-ATPase. Malayoside (23) was nearly equipotent and had a similar safety index to ouabain in guinea pig atria. However, the maximal positive inotropic effect and safety index of 23 in papillary muscle were better than those of ouabain. An electrophysiological recording showed that 23 inhibited the sodium pump current in a concentration-dependent manner.


Cardenolides are a group of $\mathrm{C}_{23}$ steroids produced in nature by several plant families and some species of toads. Because a major site of their biological action is the heart, cardenolide glycosides are also known as cardiac glycosides. These compounds share common features of a steroidal aglycone linked at the $3 \beta-\mathrm{OH}$ group to one or more sugar moieties. Some cardiac glycosides are highly toxic to humans and animals. Despite their toxicity, certain glycosides have therapeutic effects and, at appropriate doses, have been used in the treatment of congestive heart failure. The only receptor for these compounds is the integral membrane protein $\mathrm{Na}^{+} /$ $\mathrm{K}^{+}$-ATPase. Cardiac glycosides inhibit $\mathrm{Na}^{+} / \mathrm{K}^{+}$-ATPase, resulting in a positive inotropic effect at therapeutic doses, but also in cardiac arrhythmias and death at toxic doses. Apart from their very widely known cardiotonic effects, cardiac glycosides may also inhibit cancer cell replication. Cardiac glycosides also act directly on the gastrointestinal tract, causing hemorrhagic enteritis and diarrhea.
Antiaris toxicaria (Pers.) Lesch. (Moraceae), commonly known as the upas tree, is a well-known toxic plant that is widely distributed throughout Malaysian forests. The latex of A. toxicaria, called "Jianxiefenghou" in Chinese, has an unwarranted reputation for killing people who fall asleep beneath it. It has been known for centuries that most poisoned darts used by indigenous people of Southeast Asia are prepared by concentration of latex harvested from A. toxicaria. Prey wounded by such an arrow can rarely move more than 100 m . These poisons act as powerful muscle relaxants to paralyze the prey, but have no effect when the meat is eaten. ${ }^{1}$ Bisset reported that animals shot with poisoned darts "died with tetanic convulsions", indicating that A. toxicaria-derived poisons function through the bloodstream. ${ }^{2}$ The notoriety of these materials prompted investigations of their constituents, and they were found to be a good source of cardenolide cardiac glycosides. ${ }^{3-7}$ The active

[^0]principles were studied by Robinson and Ling, who observed cardiac irregularities and death when extracts of A. toxicaria were injected into cats. ${ }^{8}$ Fujimoto et al. first found that cardiac glycosides inhibited the activity of $\mathrm{Na}^{+} / \mathrm{K}^{+}$-ATPase. ${ }^{9}$

In the course of a drug-screening project on medicinal plants, an extract from the trunk bark of A. toxicaria was found to have a strong cardiotonic effect. Bioassay-guided fractionation led to the isolation and characterization of 28 cardiac glycosides/aglycones, including new compounds $\mathbf{1}-\mathbf{1 0}$, designated as antiarosides A (1), B (2), C (3), D (4), E (5), F (6), G (7), H (8), and I (9) and antiarotoxinin A (10). This study also evaluated the positive inotropic effect and safety index of these compounds in guinea pig heart muscle. The goals were to (a) find an effective and safe inotropic drug for improving hemodynamics in patients with heart failure and (b) establish structure-activity relationships of cardiac glycosides. Herein, we report the maximal positive inotropic effect and safety index of new compounds $\mathbf{1 - 1 0}$, as well as of known compounds 11-14 and 16-28, in guinea pig heart muscle. The positive control was ouabain, a classical inhibitor of $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase.

## Results and Discussion

Fresh trunk bark of A. toxicaria was extracted with ethanol. The residue obtained after evaporation of the ethanol extract was partitioned between $\mathrm{CHCl}_{3}, n-\mathrm{BuOH}$, and $\mathrm{H}_{2} \mathrm{O}$. The $\mathrm{CHCl}_{3}$-, $n$ - $\mathrm{BuOH}-$, and $\mathrm{H}_{2} \mathrm{O}$-soluble fractions were concentrated, and the extracts were individually subjected to column chromatography (CC) over silica gel and Diaion HP-20, respectively. The subfractions obtained were examined by $\mathrm{H}_{2} \mathrm{SO}_{4}$ test solution spray on TLC for cardiac glycosides, which appear as green spots. The enriched cardiac glycoside fractions were subjected to a series of column chromatographic steps (silica gel, semipreparative reversed-phase HPLC, Sephadex LH-20) in order to obtain pure cardenolides 1-28, which were characterized by analysis of their spectroscopic data.

Compound $\mathbf{1}$ had the molecular formula $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{9}$, as established from HRFABMS $\left([\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 559.3063\right)$ and by the presence of 29 signals in the ${ }^{13} \mathrm{C}$ NMR spectrum. The NMR signals were due to three methyl, 10 methylene, 10 methine, and six quaternary carbons, as determined using DEPT 135 spectroscopy (Table 1). Compound 1 showed a UV absorption maximum at 213 nm and IR absorption at $1738 \mathrm{~cm}^{-1}$ ( $\gamma$-lactonic carbonyl), which were



10
indicative of a butenolactone system. ${ }^{10}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of 1 (Table 2) showed characteristic signals of a butenolactone ring at $\delta 5.01$ and 5.28 (each $1 \mathrm{H}, \mathrm{dd}, J=18.0,1.3 \mathrm{~Hz}, \mathrm{H}-21 \mathrm{a}$ and -b ) and 6.12 (s, H-22) and methyl singlets at $\delta 1.03$ and 1.08 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{H}-18$ and -19 ), indicating 1 to be a cardenolide with a C-19
methyl group. A doublet anomeric proton at $\delta 5.37(J=8.1 \mathrm{~Hz}$, $\mathrm{H}-1^{\prime}$ ), four oxymethine protons between $\delta 4.10$ and 4.71 , and a methyl signal at $\delta 1.56(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz})$, together with the fragment ion at $\mathrm{m} / \mathrm{z} 373$ in the FABMS, pointed to the presence of a $\beta$-linked deoxyhexose unit (Table 1). The deoxyhexose was concluded to be $\beta$-antiarose on the basis of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (Tables 1 and 2) and analyses of ROESY, COSY, and HMQC experiments. ${ }^{7,11}$ The proton resonating at $\delta 4.45$ (H-2'), a double doublet ( $J=8.1,2.9 \mathrm{~Hz}$ ), indicated an axial-axial relationship to $\mathrm{H}-1^{\prime}$ and an axial-equatorial relationship to $\mathrm{H}-3^{\prime}(\mathrm{d}, J=2.9 \mathrm{~Hz}$ ). On the basis of the strong NOE effects between $\mathrm{H}-1^{\prime}$ and $\mathrm{H}-5^{\prime}$, both protons are in axial positions. Furthermore, the measured $J_{\mathrm{Cl}^{\prime}-\mathrm{HI}^{\prime}}(157.6 \mathrm{~Hz})$ for the anomeric axial proton is consistent with $\beta$-D chemistry of the sugar moiety. ${ }^{12}$ Thus, on the basis of the above data, the sugar moiety was elucidated as $\beta$-D-antiarose. The aglycone was identified as periplogenin ${ }^{13}$ by analyses of COSY, HMQC, HMBC, and ROESY experiments and comparison to literature data. The sugar unit was placed at $\mathrm{C}-3$ on the basis of the glycosylation shifts of $\mathrm{C}-2(\delta 26.9), \mathrm{C}-3(\delta 74.4)$, and $\mathrm{C}-4(\delta$ 34.5) and HMBC correlation between $\mathrm{H}-1^{\prime}$ of the antiarose unit and C-3 of the aglycone moiety. The $\beta$-orientation of antiarose at C-3 was deduced from the $W_{1 / 2}$ constant of H-3 (br s, $W_{1 / 2}=10.7$ Hz ). Thus, $\mathbf{1}$ was identified as periplogenin $3-O-\beta$-antiaropyranoside and was named antiaroside A.

The HRFAB mass spectrum of $\mathbf{2}$ showed a molecular ion-related $[\mathrm{M}+\mathrm{K}]^{+}$peak at $m / z 737.8260$, corresponding to the molecular formula $\mathrm{C}_{35} \mathrm{H}_{54} \mathrm{O}_{14}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (Tables 1and 2) and fragment ions at $m / z 519$ and 356 in the FABMS indicated 2 was a cardenolide disaccharide with two hexose sugar units. Analyses of COSY, HMQC, and HMBC spectra indicated that the sugars were $\alpha$-rhamnose and $\beta$-glucose with a $(4-1)$ linkage. The downfield shift of $\mathrm{C}-4^{\prime}$ of the rhamnose unit to $\delta 85.5$, and $\mathrm{C}-1^{\prime \prime}$

Table 1. ${ }^{13} \mathrm{C}$ NMR Data of Compounds Isolated from A. toxicaria ${ }^{a}$

| carbon | 1 | 2 | $3^{b}$ | 4 | 5 | 6 | $7^{\text {b }}$ | $8^{b}$ | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 26.2 | 24.9 | 25.8 | 25.8 | 21.8 | 21.8 | 21.9 | 21.8 | 22.2 | 25.9 |
| 2 | 26.9 | 26.9 | 30.7 | 30.7 | 26.8 | 26.3 | 26.5 | 27.0 | 29.2 | 28.6 |
| 3 | 74.4 | 72.7 | 72.5 | 72.6 | 71.2 | 71.6 | 72.9 | 73.4 | 71.6 | 67.8 |
| 4 | 34.5 | 27.4 | 35.5 | 35.5 | 29.1 | 26.5 | 36.2 | 36.0 | 31.9 | 35.9 |
| 5 | 73.8 | 30.2 | 71.3 | 72.7 | 32.8 | 32.4 | 73.9 | 73.7 | 72.2 | 74.5 |
| 6 | 36.2 | 30.5 | 42.8 | 42.9 | 29.7 | 30.1 | 36.6 | 37.5 | 32.0 | 37.9 |
| 7 | 24.6 | 21.8 | 22.3 | 22.3 | 26.5 | 22.2 | 24.5 | 24.8 | 27.1 | 24.4 |
| 8 | 41.1 | 42.0 | 42.9 | 42.9 | 42.3 | 41.9 | 40.4 | 40.4 | 41.5 | 39.7 |
| 9 | 39.4 | 35.9 | 41.9 | 41.9 | 35.7 | 36.0 | 36.3 | 36.4 | 38.4 | 39.1 |
| 10 | 41.3 | 39.4 | 56.2 | 56.2 | 49.7 | 50.4 | 54.9 | 55.1 | 37.4 | 41.4 |
| 11 | 22.0 | 22.0 | 22.0 | 22.0 | 22.5 | 28.7 | 33.3 | 33.0 | 20.9 | 21.4 |
| 12 | 40.1 | 40.5 | 39.6 | 39.7 | 40.2 | 40.1 | 74.6 | 74.7 | 39.8 | 40.4 |
| 13 | 50.0 | 50.3 | 50.0 | 50.0 | 50.5 | 50.0 | 57.0 | 57.0 | 50.2 | 49.2 |
| 14 | 84.8 | 85.0 | 84.4 | 84.4 | 84.9 | 84.9 | 85.3 | 85.3 | 84.5 | 85.1 |
| 15 | 33.3 | 33.1 | 32.8 | 32.8 | 33.0 | 32.9 | 32.9 | 33.2 | 33.1 | 44.2 |
| 16 | 27.4 | 27.2 | 27.2 | 27.2 | 27.4 | 27.3 | 28.0 | 28.1 | 27.4 | 23.7 |
| 17 | 51.5 | 51.6 | 51.4 | 51.4 | 51.5 | 51.4 | 46.6 | 46.6 | 51.5 | 59.0 |
| 18 | 16.2 | 16.3 | 16.0 | 16.0 | 16.4 | 16.2 | 10.5 | 10.5 | 16.2 | 16.6 |
| 19 | 17.2 | 65.6 | 208.3 | 208.3 | 179.5 | 175.7 | 176.9 | 176.8 |  | 17.4 |
| 20 | 175.7 | 175.9 | 175.7 | 175.6 | 176.4 | 176.0 | 176.7 | 177.2 | 176.2 | 79.5 |
| 21 | 73.7 | 73.8 | 73.7 | 73.7 | 73.9 | 73.7 | 74.1 | 74.1 | 73.8 | 81.1 |
| 22 | 117.8 | 117.7 | 117.8 | 117.8 | 117.7 | 117.7 | 117.5 | 117.5 | 117.6 | 32.3 |
| 23 | 174.3 | 174.5 | 174.4 | 174.4 | 174.7 | 174.5 | 174.8 | 174.9 | 174.6 | 176.3 |
| $1^{\prime}$ | 100.0 | 99.8 | 99.9 | 99.7 | 99.7 | 100.0 | 100.5 | 99.8 | 99.9 |  |
| $2^{\prime}$ | 69.5 | 72.4 | 72.8 | 71.7 | 73.0 | 72.8 | 73.0 | 69.6 | 72.9 |  |
| $3^{\prime}$ | 73.7 | 72.8 | 72.8 | 72.3 | 72.9 | 72.8 | 72.6 | 73.7 | 72.9 |  |
| $4^{\prime}$ | 73.3 | 85.5 | 74.2 | 85.1 | 74.1 | 74.2 | 73.9 | 73.7 | 74.2 |  |
| 5 | 69.9 | 68.4 | 69.9 | 68.2 | 70.3 | 70.0 | 70.7 | 70.0 | 70.2 |  |
| $6^{\prime}$ | 16.9 | 18.5 | 18.6 | 18.4 | 18.8 | 18.6 | 18.7 | 17.1 | 18.7 |  |
| $1^{\prime \prime}$ |  | 106.9 |  | 106.7 |  | 95.7 |  |  |  |  |
| $2^{\prime \prime}$ |  | 76.5 |  | 76.4 |  | 74.1 |  |  |  |  |
| $3^{\prime \prime}$ |  | 78.6 |  | 78.6 |  | 79.1 |  |  |  |  |
| $4^{\prime \prime}$ |  | 71.7 |  | 21.3 |  | 71.3 |  |  |  |  |
| $5^{\prime \prime}$ |  | 78.4 |  | 78.4 |  | 79.4 |  |  |  |  |
| $6^{\prime \prime}$ |  | 62.8 |  | 62.8 |  | 62.5 |  |  |  |  |

[^1]Table 2. ${ }^{1} \mathrm{H}$ NMR Data of Compounds Isolated from A. toxicaria ${ }^{a}$

| proton | 1 | 2 |
| :---: | :---: | :---: |
| 1a/b | 1.44 (m)/2.19 (dd, 14.2, 2.9) | 1.66 (br t, 4.1)/2.33 (ddd, 13.5, 13.5, 3.1) |
| 2a/b | 1.79 (m)/2.02 (br d, 13.0) | 1.72 (m)/1.89 (m) |
| 3 | 4.51 (br s, 10.7) ${ }^{\text {b }}$ | 4.15 (br s, 13.6) ${ }^{\text {b }}$ |
| 4a/b | 1.88 (m)/2.15 (dd, 15.2, 2.9) | 1.25 (br d, 12.8)/2.01 (m) |
| 5 |  | 2.55 (br d, 13.3) |
| 6a/b | 1.54 (m)/1.95 (m) | 1.57 (m)/1.89 (m) |
| 7a/b | 1.33 (m)/2.23 (br d, 11.7) | 1.43 (m)/2.14 (m) |
| 8 | 1.83 (m) | 2.01 (m) |
| 9 | 1.67 (br t, 11.4) | 1.89 (m) |
| 10 |  |  |
| $11 \mathrm{a} / \mathrm{b}$ | 1.38 (br d, 10.0)/1.44 (m) | 1.43 (m) |
| 12a/b | 1.44 (m) | 1.48 (m) |
| 15a/b | 1.88 (m)/2.08 (m) | 1.89 (m)/2.17 (br dd, 10.4, 10.4) |
| 16a/b | 1.95 (m)/2.08 (m) | 2.01 (m)/2.14 (m) |
| 17 | 2.81 (dd, 8.8, 5.0) | 2.81 (dd, 9.0, 5.1) |
| 18 | 1.03 (s) | 1.04 (s) |
| 19a/b | 1.08 (s) | 3.77 (dd, 10.9, 5.5)/4.07 (d, 10.9) |
| 21a/b | 5.01 (dd, 18.0, 1.3)/5.28 (dd, 18.0, 1.3) | 5.01 (d, 18.0)/5.29 (d, 18.0) |
| 22 | 6.12 (s) | 6.12 (s) |
| $1^{\prime}$ | 5.37 (d, 8.1) | 5.37 (br s) |
| $2^{\prime}$ | 4.45 (dd, 8.1, 2.9) | 4.49 (br s) |
| $3^{\prime}$ | 4.71 (d, 2.9) | 4.62 (dd, 9.1, 2.1) |
| $4^{\prime}$ | 4.10 (br s) | 4.34 (d, 9.1) |
| $5^{\prime}$ | 4.58 (q, 6.4) | 4.29 (dq, 9.1, 6.0) |
| $6^{\prime}$ | 1.56 (d, 6.4) | 1.70 (d, 6.0) |
| $1^{\prime \prime}$ |  | 5.18 (d, 7.7) |
| $2^{\prime \prime}$ |  | 4.05 (d, 7.7) |
| $3^{\prime \prime}$ |  | 4.18 (d, 9.1) |
| $4^{\prime \prime}$ |  | 4.21 (d, 9.1) |
| $5 \prime$ |  | 3.79 (m) |
| $6^{\prime \prime} \mathrm{a} / \mathrm{b}$ |  | 4.39 (m)/ 4.43 (m) |
| proton | 3 | 4 |
| 1a/b | 2.07 (m)/2.34 (dd, 10.1, 4.2) | 2.03 (m)/2.32 (m) |
| $2 \mathrm{a} / \mathrm{b}$ | 1.61 (m)/2.29 (m) | 1.57 (ddd, 13.4, 13.4, 4.3)/2.28 (m) |
| 3 | 4.66 (dddd, 11.2, 11.2, 5.0, 4.3) | 4.60 (dddd, 10.4, 10.4, 5.1, 5.1) |
| 4a/b | 1.78 (br d, 13.6)/2.42 (dd, 13.6, 4.3) | 1.72 (m)/2.39 (dd, 13.5, 5.1) |
| 5 |  |  |
| 6a/b | 1.68 (m)/2.22 (m) | 1.63 (m)/1.77 (m) |
| 7a/b | 1.68 (m)/2.29 (m) | 2.11 (br dd, 8.0, 3.7)/2.28 (m) |
| 8 | 2.22 (m) | 2.16 (ddd, 13.7, 13.7, 4.3) |
| 9 | 1.40 (m) | 2.23 (m) |
| 10 |  |  |
| 11a/b | 1.40 (m)/1.68 (m) | 1.43 (m)/1.68 (br d, 10.2) |
| 12a/b | 1.40 (m) | 1.41 (m)/ 1.27 (dd, 14.3, 3.1) |
| 15a/b | 1.29 (dd, 13.6, 3.0)/1.83 (m) | 1.41 (m)/ 1.85 (m) |
| 16a/b | 2.13 (m)/ 1.91 (m) | 2.05 (ddd, 13.5, 3.5, 3.4)/1.90 (ddd, 13.5, 9.0, 4.8) |
| 17 | 2.02 (dd, 8.8, 4.8) | 1.99 (m) |
| 18 | 2.73 (dd, 9.3, 4.8) | 2.74 (ddd, 9.0, 4.8) |
| 19a/b | 0.95 (s)/ 10.12 (s) | 0.96 (s)/ 0.13 (s) |
| 21a/b | 4.98 (dd, 18.0, 1.3)/5.25 (dd, 18.0, 1.3) | 4.97 (dd, 18.0, 1.4)/5.25 (dd, 18.0, 1.4) |
| 22 | 6.09 (s) | 6.09 (s) |
| $1^{\prime}$ | 5.36 (br s) | 5.30 (br s) |
| $2^{\prime}$ | 4.43 (br s) | 4.40 (br s) |
| $3^{\prime}$ | 4.44 (dd, 8.6, 3.3) | 4.54 (d, 10.1) |
| $4^{\prime}$ | 4.21 (m) | 4.32 (dd, 10.1, 9.3) |
| $5 \prime$ | 4.26 (dq, 8.6, 5.8) | 4.18 (m) |
| $6^{\prime}$ | 1.59 (d, 5.8) | 1.63 (d, 6.1) |
| $1^{\prime \prime}$ |  | 5.20 (d, 7.7) |
| $2^{\prime \prime}$ |  | 4.08 (dd, 8.1, 7.7) |
| $3^{\prime \prime}$ |  | 4.18 (m) |
| $4^{\prime \prime}$ |  | 4.18 (m) |
| $5^{\prime \prime}$ |  | 3.78 (ddd, 8.4, 4.5, 4.5) |
| $6^{\prime \prime} \mathrm{a} / \mathrm{b}$ |  | 4.34 (m)/4.42 (m) |
| proton | 5 | 6 |
| 1a/b | 1.60 (ddd, 12.6, 12.6, 3.1)/2.51 (m) | 1.55 (ddd, 14.0, 10.0, 2.6)/2.37 (ddd, 12.9, 12.9, 3.8) |
| $2 \mathrm{a} / \mathrm{b}$ | 1.99 (m)/2.54 (m) | 1.64 (m)/1.91 (m) |
| 3 | 4.52 (br s, 12.4) ${ }^{b}$ | 4.17 (br s, 10.7) ${ }^{\text {b }}$ |
| 4a/b | 1.38 (m)/1.99 (m) | 2.00 (m)/2.64 (dd, 14.0, 3.3) |
| 5 | 2.92 (br d, 12.6) | 2.88 (br d, 11.9) |
| 6a/b | 1.70 (m)/1.97 (m) | 1.64 (m)/1.86 (m) |
| 7a/b | 1.67 (m)/1.91 (m) | 1.41 (m)/2.07 (m) |
| 8 | 2.59 (m) | 2.52 (ddd, 11.7, 11.7, 2.4) |
| 9 | 1.91 (m) | 1.91 (m) |

Table 2 Continued

| proton | 5 | 6 |
| :---: | :---: | :---: |
| 10 |  |  |
| $11 \mathrm{a} / \mathrm{b}$ | 1.42 (dd, 129, 12.9)/2.17 (m) | 1.20 (m)/2.00 (m) |
| 12a/b | 1.48 (m) | 1.41 (m) |
| 15a/b | 1.87 (m)/2.11 (m) | 1.86 (m)/2.12 (m) |
| 16a/b | 2.06 (m) | 2.00 (m)/2.12 (m) |
| 17 | 2.84 (dd, 8.3, 4.2) | 2.79 (br dd, 8.4, 5.2) |
| 18 | 1.20 (s) | 1.17 (s) |
| 19 |  |  |
| $21 \mathrm{a} / \mathrm{b}$ | 5.06 (d, 18.0)/5.35 (d, 18.0) | 5.00 (d, 18.1)/5.28 (d, 18.1) |
| 22 | 6.14 (s) | 6.10 (s) |
| $1^{\prime}$ | 5.48 (br s) | 5.39 (br s) |
| $2^{\prime}$ | 4.57 (br s) | 4.46 (m) |
| $3^{\prime}$ | 4.52 (d, 8.2) | 4.46 (m) |
| $4^{\prime}$ | 4.32 (m) | 4.22 (m) |
| $5^{\prime}$ | 4.32 (m) | 4.30 (dq, 6.0, 6.0) |
| $6^{\prime}$ | 1.67 (d, 5.1) | 1.65 (d, 6.0) |
| $1^{\prime \prime}$ |  | 6.29 (d, 8.0) |
| $2^{\prime \prime}$ |  | 4.13 (dd, 8.0, 7.7) |
| $3^{\prime \prime}$ |  | 4.22 (m) |
| $4 \prime$ |  | 4.22 (m) |
| 5" |  | 4.01 (br dd, 7.1, 4.0) |
| $6^{\prime \prime} \mathrm{a} / \mathrm{b}$ |  | 4.31 (dd, 5.9, 3.4)/4.38 (d, 11.3) |
| proton | $7^{\text {c }}$ | $8^{\text {c }}$ |
| 1a/b | 2.27 (br d, 14.7)/ 2.97 (br d, 14.7) | 2.28 (d, 16.4)/3.16 (dd, 14.7, 14.7) |
| $2 \mathrm{a} / \mathrm{b}$ | 1.78 (br d, 14.1)/ 1.98 (m) | 1.87 (m)/2.16 (m) |
| 3 | 4.35 (br s, 9.3) ${ }^{\text {b }}$ | 4.51 (br s, 12.1) ${ }^{\text {b }}$ |
| $4 \mathrm{a} / \mathrm{b}$ | 1.87 (br d, 14.5)/ 1.98 (m) | 2.00 (m)/2.16 (m) |
| 5 |  |  |
| 6a/b | 1.65 (m)/ 3.13 (br d, 13.1) | 1.69 (br d, 12.6)/3.11 (m) |
| 7a/b | 1.48 (m)/ 2.49 (d, 12.7) | 1.47 (br d, 13.4)/2.48 (br d, 11.9) |
| 8 | 3.06 (br d, 10.1) | 3.04 (m) |
| 9 | 2.19 (m) | 2.00 (m) |
| 10 |  |  |
| 11a/b | 1.98 (m)/2.39 (dd, 7.4, 3.7) | 2.00 (m) |
| 12a/b | -/3.81 (br d, 10.8) | -/3.77 (br d, 6.9) |
| 15a/b | 1.98 (m)/1.98 (m) | 2.00 (m)/ 2.35 (m) |
| 16a | 2.16 (m) | 2.16 (m) |
| 17 | 3.75 (t, 7.5) | 3.75 (t, 7.9) |
| 18 | 1.26 (s) | 1.26 (s) |
| 19 |  |  |
| 21a/b | 5.13 (d, 18.1)/5.29 (d, 18.1) | 5.12 (d, 18.1)/5.28 (d, 18.1) |
| 22 | 6.24 (s) | 6.25 (s) |
| $1^{\prime}$ | 5.54 (br s) | 5.44 (d, 8.1) |
| $2^{\prime}$ | 4.53 (br s) | 4.49 (dd, 8.1, 2.6) |
| $3^{\prime}$ | 4.46 (br d, 4.7) | 4.76 (br s) |
| $4^{\prime}$ | 4.29 (m) | 4.14 (d, 3.0) |
| $5^{\prime}$ | 4.27 (br q, 3.7) | 4.62 (q, 6.2) |
| $6^{\prime}$ | 1.65 (d, 3.7) | 1.56 (d, 6.2) |
| $1^{\prime \prime}$ |  |  |
| $2^{\prime \prime}$ |  |  |
| $3^{\prime \prime}$ |  |  |
| $4^{\prime \prime}$ |  |  |
| 5" |  |  |
| $6^{\prime \prime} \mathrm{a} / \mathrm{b}$ |  |  |
| proton | 9 | 10 |
| 1a/b | 1.38 (br d, 13.8)/2.19 (br d, 17.0) | 1.48 (m)/2.24 (m) |
| $2 \mathrm{a} / \mathrm{b}$ | 1.65 (m)/ 2.00 (m) | 1.82 (m) |
| 3 | 4.22 (br s, 9.1) ${ }^{\text {b }}$ | 4.44 (br s, 12.8) ${ }^{\text {b }}$ |
| 4a/b | 1.79 (m)/2.10 (m) | 1.78 (d, 10.1)/2.29 (d, 14.6) |
| 6a/b | 1.79 (m)/2.10 (m) | 1.62 (br d, 13.0)/1.96 (dt, 9.1, 4.0) |
| 7a/b | 1.26 (m)/2.41 (br d, 7.9) | 2.24 (m) |
| 8 | 2.43 (br d, 11.5) | 1.97 (dt, 9.1, 4.0) |
| 9 | 2.31 (br d, 12.5) | 1.70 (br t, 10.7) |
| 10 | 1.83 (d, 12.5) |  |
| 11a/b | 1.06 (br d, 12.0)/1.90 (m) | 1.45 (ddd, 10.6, 9.6, 4.0) |
| 12a/b | 1.44 (m) | 1.36 (dt, 13.3, 10.6)/1.48 (dt, 13.3, 9.6) |
| 15a/b | 1.90 (m)/2.10 (m) | 1.84 (m)/2.04 (m) |
| 16 | 2.00 (m) | 2.04 (m) |
| 17 | 2.10 (m) | 2.14 (dd, 8.2, 5.7) |
| 18 | 2.79 (br d, 7.8) | 1.27 (s) |
| 19 | 1.06 (s) | 1.17 (s) |
| 21a/b | 5.03 (d, 18.1)/5.33 (d, 18.1) | 4.40 (d, 9.4)/4.78 (d, 9.4) |
| 22 | 6.12 (s) | 2.82 (d, 16.8)/2.86 (d, 16.8) |

Table 2 Continued

| proton | $\mathbf{9}$ | $\mathbf{1 0}$ |
| :--- | :--- | :--- |
| $1^{\prime}$ | $5.44(\mathrm{br} \mathrm{s})$ |  |
| $2^{\prime}$ | $4.50(\mathrm{~m})$ |  |
| $3^{\prime}$ | $4.50(\mathrm{~m})$ |  |
| $4^{\prime}$ | $4.29(\mathrm{~m})$ |  |
| $5^{\prime}$ | $4.29(\mathrm{~m})$ |  |
| $6^{\prime}$ | $1.65(\mathrm{~d}, 3.8)$ |  |
| $1^{\prime \prime}$ |  |  |
| $2^{\prime \prime}$ |  |  |
| $3^{\prime \prime}$ |  |  |
| $4^{\prime \prime}$ |  |  |
| $5^{\prime \prime}$ |  |  |
| $6^{\prime \prime} \mathrm{a} / \mathrm{b}$ |  |  |

${ }^{a} \delta$ values in pyridine $-d_{5}(400 \mathrm{MHz})$; coupling constants in Hz are given in parentheses. ${ }^{b} W_{1 / 2}(\mathrm{~Hz})$ : width of half-peak height. ${ }^{c} \delta$ values in pyridine $-d_{5}(300 \mathrm{MHz})$; coupling constants in Hz are given in parentheses.
of the glucose unit at $\delta 106.9$, and an HMBC correlation between $\mathrm{H}-4^{\prime}$ and $\mathrm{C}-1^{\prime \prime}$ confirmed the ( $4-1$ ) linkage between them. The ${ }^{13} \mathrm{C}$ NMR spectrum (Table 1), combined with DEPT 135, HMQC, and HMBC experiments of 2 indicated that the aglycone was cannogenol (15), which was isolated from the $\mathrm{CHCl}_{3}$-soluble fraction. Location of the sugar unit at C-3 was suggested by the downfield shift of $\mathrm{C}-3$ from $\delta 66.1$ in $\mathbf{1 5}$ to $\delta 72.7$ in $\mathbf{2}$ and a HMBC correlation between $\mathrm{H}-1^{\prime}$ and $\mathrm{C}-3$. The $\beta$-orientation of the $\mathrm{C}-3$ disaccharide unit was deduced from the $W_{1 / 2}$ constant of $\mathrm{H}-3(\mathrm{br} \mathrm{s}$, $\left.W_{1 / 2}=13.6 \mathrm{~Hz}\right)$. Compound 2 was thus assigned as $3 \beta-[(O-\beta-$ glucopyranosyl(1-4)- $\alpha$-rhamnopyranosyl)oxy]cannogenol, and it was named antiaroside B.

Compound 3 showed a pseudo molecular ion peak at $\mathrm{m} / \mathrm{z}$ 551.2855 in its HRFABMS and had the same molecular formula as convallatoxin (17), $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{10}$. UV, IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, and MS spectroscopic analyses indicated that $\mathbf{3}$ was a stereoisomer of convallatoxin (17). Downfield shifts of C-1, C-2, and C-6 from $\delta$ 18.7, 25.4, and 36.9 in $\mathbf{1 7}$ to $\delta 25.8,26.0$, and 42.8 in $\mathbf{3}$ indicated that the orientation of $\mathrm{C}-3$ was different from that of $\mathbf{1 7}$. The $\alpha$-orientation of C-3 was deduced from the coupling constant values of H-3 (dddd, $J=11.2,11.2,5.0,5.0 \mathrm{~Hz}$ ). This assignment was supported by downfield shifts of H-2b, H-3, and H-4 from $\delta 2.00$ $(\mathrm{m}), 4.32\left(\mathrm{br} \mathrm{s}, W_{1 / 2}=8.3 \mathrm{~Hz}\right), 2.13(\mathrm{~d}, J=15.3 \mathrm{~Hz})$, and 1.72 (m) in $\mathbf{1 7}$ to $\delta 2.29$ (m), 4.66 (dddd, $J=11.2,11.2,5.0,4.3 \mathrm{~Hz}$ ), $2.42(\mathrm{dd}, J=13.6,4.3 \mathrm{~Hz})$, and $1.78(\mathrm{br} \mathrm{d}, J=13.6 \mathrm{~Hz})$ in 3. HMBC correlation of $\mathrm{H}-1^{\prime}$ with $\mathrm{C}-3\left[\delta_{\mathrm{C}} 72.5 / \delta_{\mathrm{H}} 5.36(\mathrm{br} \mathrm{s})\right]$ and a NOE correlation between $\mathrm{H}-3$ and $\mathrm{H}-1^{\prime}$ inferred that the rhamnose unit was linked to C-3. Hence, structure 3 was established for antiaroside C.

Compound 4 was assigned the molecular formula $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{15}$ by HRFABMS. Comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4}$ with those of $\mathbf{3}$ showed that the two structures were very similar, except for one additional sugar unit in 4 . On the basis of its larger $[M+$ $\mathrm{K}]^{+}$ion at 751,162 mass units more than that of $\mathbf{3}$, and appropriate sugar proton and carbon signals in the NMR spectra, 4 has one glucosyl unit in addition to a rhamnosyl moiety. The H-1" signal appeared at $\delta 5.20$ and showed HMBC correlation with the downfield shifted $\mathrm{C}-4^{\prime}(\delta 85.1)$, as well as a NOE with $\mathrm{H}-4^{\prime}$. These data determined the interglycosydic linkage of the two sugar moieties as $\alpha$-rhamnosyl ( $4^{\prime}-1^{\prime}$ )- $\beta$-glucoside. A HMBC correlation between $\mathrm{H}-1^{\prime}$ and $\mathrm{C}-3(\delta 72.5)$ suggested that the sugar unit was attached at $\mathrm{C}-3$, and $\alpha$-orientation was deduced from the coupling type and constant values of H-3 ( $\delta 4.60$, dddd, $J=10.4,10.4,5.1$, $5.1 \mathrm{~Hz})$. Thus, the structure of 4 was deduced as $4^{\prime}-O-\beta-$ glucopyranosyl antiaroside C and was named antiaroside D .
Compound 5 had the same molecular formula as $17\left(\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{10}\right)$. Comparison of the ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5}$ and $\mathbf{1 7}$ showed that the two structures were very similar, except for the absence of signals for both an aldehyde and one oxygenated carbon in the former. A strong carbonyl absorption in the IR spectrum at 1738 $\mathrm{cm}^{-1}$ and a carbon signal at $\delta 179.5$ in the ${ }^{13} \mathrm{C}$ NMR spectrum
suggested that a carboxylic acid rather than aldehyde group was present at C-19. A proton signal at $\delta 2.92(\mathrm{br} \mathrm{d}, J=12.6 \mathrm{~Hz})$ in the ${ }^{1} \mathrm{H}$ NMR was assignable to $\mathrm{H}-5$, since it coupled with $\mathrm{H}-4$ and -6 in the COSY spectrum. The absence of a carbon signal at $\delta$ 73.9 (C-5 in 17) and the presence of a carbon signal at $\delta 32.8$ (C-5 in 5) suggested that the OH group on C-5 in $\mathbf{1 7}$ was not present in 5. This postulate was supported by upfield shifts of C-4 and C-6 from $\delta 35.5$ to $\delta 29.1$ and $\delta 36.9$ to $\delta 29.7$, together with HMBC correlations of $\mathrm{H}-3,-4 \mathrm{~b},-6 \mathrm{~b}$, and -7 b to $\mathrm{C}-5$. In a ROESY experiment, a correlation between $\mathrm{H}-5$ and $\mathrm{H}-1 \mathrm{~b}(\delta 2.51)$ determined the $\beta$-orientation of $\mathrm{H}-5$. An anomeric proton signal at $\delta$ 5.48 (br s) and carbon signals at $\delta 99.7,73.0,72.9,74.1,70.3$, and 18.8 indicated the presence of a rhamnosyl moiety. The HMBC correlation between $\mathrm{H}-3$ and $\mathrm{C}-1^{\prime}$ placed the rhamnosyl unit on $\mathrm{C}-3$, and a $W_{1 / 2}$ coupling constant of 12.4 Hz for $\mathrm{H}-3$ indicated the $\alpha$-orientation. Therefore, the structure 5 was established for antiaroside E.

Compound $6\left(\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{15}\right)$ had fragment ions at $\mathrm{m} / \mathrm{z} 550$ and 534 in the FABMS, and two anomeric signals in the ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectra indicated that 6 was a diglycoside with $\beta$-glucopyranose and $\alpha$-rhamnose sugar units. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 6 were very close to those of $\mathbf{5}$, except for the added signals of a glucopyranose moiety and the position of C-19 (Tables 1 and 2). An anomeric proton signal at $\delta 6.29(\mathrm{~d}, J=8.0 \mathrm{~Hz})$ in the ${ }^{1} \mathrm{H}$ NMR spectrum and signals at $\delta 95.7,74.1,79.1,71.3,79.4$, and 62.5 in the ${ }^{13} \mathrm{C}$ NMR spectrum suggested the presence of $\beta$-glucose. The upfield shift of C-19 from $\delta 179.5$ to $\delta 175.7$, the downfield shift of the anomeric proton to $\delta 6.29$, and a ${ }^{3} J$ HMBC correlation from $\mathrm{H}-1^{\prime \prime}$ to $\mathrm{C}-19$ suggested that the glucose unit was attached to $\mathrm{C}-19$. Thus, the structure of $\mathbf{6}$ was determined as $19-O-\beta$ glucopyranosyl antiaroside E , and it was named antiaroside F .

Compound $7\left(\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{12}\right)$ was 16 mass units larger than $\beta$-antiarin (28), ${ }^{13}$ isolated from the $\mathrm{CHCl}_{3}$-soluble fraction. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{7}$ were quite similar to those of $\mathbf{2 8}$, except for absence of the aldehyde signal in 7 . Thus, 7 was likely a 19 -nor-$\beta$-antiarin derivative. The major differences were that the proton signal at $\delta 10.37$ (s) and the carbonyl signal at $\delta 208.5$ in 28 disappeared in 7, and instead one carboxyl carbon signal appeared at $\delta$ 176.9. Thus, the aldehyde group of $\mathbf{2 8}$ was replaced by a carboxylic acid group in 7. This conclusion was supported by a strong IR absorption at $1726 \mathrm{~cm}^{-1}$. The $\beta$-orientations of OH groups at C-3 and -12 were deduced from the coupling constants of $\mathrm{H}-3$ ( $\delta 4.35$, br s, $W_{1 / 2}=9.3 \mathrm{~Hz}$ ) and H-12 (br d, $J=10.8 \mathrm{~Hz}$ ). On the basis of the above data, the structure of 7 was established, and it was named antiaroside G.

Compound 8 had the same molecular formula as that of $\mathbf{7}$ $\left(\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{12}\right)$. The UV, IR, and NMR data strongly resembled those of 7, consistent with a general structure containing a central cardenolide moiety trioxygenated at $\mathrm{C}-3, \mathrm{C}-5$, and $\mathrm{C}-12$ and a carboxylic acid group in the 19 -position. The sole significant differences observed were in signals of the glycosidic part of the
molecules (Tables 1 and 2). The sugar proton signals of $\mathbf{8}$ indicated the presence of a $\beta$-antiarosyl moiety. These data were in agreement with the replacement of the rhamnosyl unit in 7 by an antiarosyl unit in 8 . The $\beta$-orientation of $\mathrm{C}-3$ was deduced by the $W_{1 / 2}$ of $\mathrm{H}-3$ (br s, 12.1 Hz ). Thus, the structure of $\mathbf{8}$ was assigned, and it was named antiaroside H .

A molecular formula of $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}_{9}$ was deduced for compound 9, 14 mass units less than that of periplorhamnoside (11), which was isolated from the same extract. Comparison of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data with those of $\mathbf{1 1}$ showed that they were similar except for the absence of the C-19 methyl group, the presence of one methine $(-\mathrm{CH})$ at $\delta 1.83(\mathrm{~d}, 12.5)$, and an upfield shift of C-10 from $\delta 41.2$ to $\delta 37.4$ in $\mathbf{9}$. Thus, 9 was determined as demethylperiplorhamnoside, and it was named antiaroside I.

Compound $10\left(\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{6}\right)$ had 23 signals in the ${ }^{13} \mathrm{C}$ NMR spectrum corresponding to two methyl, 11 methylene, four methine, and six quaternary carbon atoms. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 10 displayed signals characteristic of the steroid core of a cardenolide. However, the absence of typical signals for the olefinic group of the butenolactone ring and the downfield resonance of C-23 to 176.3 suggested that the carbonyl group of the fivemembered lactone in $\mathbf{1 0}$ was not conjugated with a double bond. This was confirmed by the carbonyl absorption at $1761 \mathrm{~cm}^{-1}$ in the IR spectrum, the presence of two methylene groups at $\delta_{\mathrm{C}} 81.1 /$ $\delta_{\mathrm{H}} 4.78$ and 4.40 (each $\left.1 \mathrm{H}, \mathrm{d}, J=16.8 \mathrm{~Hz}, \mathrm{H}-21\right)$ and $\delta_{\mathrm{C}} 32.3 / \delta_{\mathrm{H}}$ 2.86 and 2.82 (each $1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{H}-22$ ), and the absence of any significant UV absorption. Three OH groups were on the steroid skeleton (C-3, C-5, C-14), and a fourth OH group was placed at $\mathrm{C}-20$; this latter carbon resonated at $\delta 79.5$ and no extra oxygenated signal, other than aforementioned, was observed in the spectrum of 10. HMBC correlations from $\mathrm{H}-16, \mathrm{H}-21 \mathrm{~b}$, and $\mathrm{H}-22$ to $\mathrm{C}-20$ and from $\mathrm{H}-21 \mathrm{~b}$ to $\mathrm{C}-22$ confirmed the OH group at $\mathrm{C}-20$. The orientation of the C-3 OH was also determined by the $W_{1 / 2}$ of $\mathrm{H}-3$ (br s, 12.1 Hz ). The above analysis established the structure of $\mathbf{1 0}$ as shown, and the compound was named antiarotoxinin A.

Periplorhamnoside (11), ${ }^{13}$ cheiranthoside VII (12), ${ }^{11}$ strophanthidol (13), ${ }^{14}$ convallatoxol (14), ${ }^{5}$ cannogenol (15), ${ }^{15}$ strophanthidin (16), ${ }^{13}$ convallatoxin (17), ${ }^{5}$ strophathojavoside (18), ${ }^{16}$ desglucocheirotoxin (19), ${ }^{14}$ strophalloside (20), ${ }^{13}$ convalloside (21), ${ }^{17}$ glucostrophalloside (22), ${ }^{18}$ malayoside (23), ${ }^{5}$ antiarigenin (24), ${ }^{13}$ $\alpha$-antiarin (25), ${ }^{5}$ antialloside (26), ${ }^{16}$ toxicarioside B (27), ${ }^{7}$ and $\beta$-antiarin (28) ${ }^{13}$ were also isolated from A. toxicaria trunk bark. These known compounds were identified by comparison of their physical and spectroscopic properties with those reported in the literature.
Minimal positive effective concentrations ( $\mathrm{PIEC}_{\text {min }}$ ) to increase contraction of rat left atria were $0.05,0.25,1$, and $7.5 \mu \mathrm{M}$ for ouabain, 23, 16, and 8, respectively. In right ventricular muscle, the $\mathrm{PIEC}_{\text {min }}$ for the positive inotropic action of different cardiac glycosides varied from 0.075 to $8.33 \mu \mathrm{M}$ (Table 3). Compounds with lower $\mathrm{PIEC}_{\text {min }}$ may have stronger binding affinity to $\mathrm{Na}^{+} / \mathrm{K}^{+}$ATPase of cardiac muscle.

Maximal contractions after treatment with cardiac glycosides are expressed as a percentage of those before glycoside treatment. For ouabain, $\mathbf{2 3}, \mathbf{1 6}$, and $\mathbf{8}$, these values were $775 \%, 660 \%, 165 \%$, and $144 \%$, respectively, in left atria. In right ventricular muscle, the maximal contractions were $249 \%$, $446 \%, 240 \%$, and $260 \%$ compared to basal values for ouabain, $\mathbf{2 3}, \mathbf{1 6}$, and $\mathbf{8}$, respectively (Table 4).

The safety index (therapeutic index) was calculated from the ratio of the arrhythmogenic concentration to the minimal effective positively inotropic concentration. A narrow margin of safety index restricts the therapeutic use of this class of positive inotropic drugs. For example, the safety index of digitalis is narrow, and arrhythmias are common problems in clinical practice. ${ }^{19}$ Safety indexes were $20,20,9$, and 7.5 for ouabain, 23, 16, and 8, respectively, in left

Table 3. Minimal Positive Inotropic Effectctive Concentration $\left(\mathrm{PIEC}_{\text {min }}\right)$ of Cardiac Glycosides in Atria and Ventricular Strips

| left atria strips |  | right ventricular strips |  |
| :---: | :---: | :---: | :---: |
| cmpd | $\mathrm{PIEC}_{\text {min }}(\mu \mathrm{M})$ | cmpd | $\mathrm{PIEC}_{\text {min }}(\mu \mathrm{M})$ |
| 1 | $0.10 \pm 0.07$ | 1 | $0.083 \pm 0.03$ |
| 2 | $0.38 \pm 0.13$ | 2 | $0.075 \pm 0.05$ |
| 3 | $2.75 \pm 0.25$ | 3 | $4 \pm 1$ |
| 4 | $2.75 \pm 0.25$ | 4 | $2.75 \pm 0.25$ |
| 5 | $0.42 \pm 0.08$ | 5 | $1.33 \pm 0.6$ |
|  | $1.42 \pm 0.58$ | 6 | $3.17 \pm 0.93$ |
| 7 | $3.75 \pm 1.25$ | 7 | $3.67 \pm 1.33$ |
| 8 | $7.50 \pm 2.50$ | 8 | $8.33 \pm 1.67$ |
| 9 | $0.83 \pm 0.17$ | 9 | $0.67 \pm 0.17$ |
| 10 | 0.1 | 10 |  |
| 11 | $0.05 \pm 0.01$ | 11 | $0.25 \pm 0.1$ |
| 12 | 0.1 | 12 | 0.25 |
| 13 | $1.25 \pm 0.75$ | 13 | $0.30 \pm 0.20$ |
| 14 | 0.1 | 14 | 0.25 |
| 16 | 1 | 16 | $4.8 \pm 1.5$ |
| 17 | 0.1 | 17 | 0.125 |
| 18 | 0.25 | 18 | 1 |
| 19 | 0.05 | 19 | 0.5 |
| 20 | 0.5 | 20 | 0.5 |
| 21 | 0.25 | 21 | , |
| 22 | 0.25 | 22 | , |
| 23 | 0.25 | 23 | 0.25 |
| 24 | 0.05 | 24 |  |
| 25 | 0.5 | 25 | 2 |
| 26 | 0.25 | 26 |  |
| 27 | 0.1 | 27 |  |
| 28 | , | 28 | 2 |
| ouabain | 0.05 | ouabain | 0.05 |

Table 4. Maximal Positive Inotropic Effect ( $\mathrm{PIE}_{\max }$ ) of Cardiac Glycosides in Atria and Ventricular Strips

| left atria strips |  |  | right ventricular strips |  |
| :--- | :---: | :--- | :---: | :---: |
| cmpd | PI $E_{\text {max }}(\%$ of basal $)$ |  | cmpd | PI $E_{\max }(\%$ of basal $)$ |
| $\mathbf{1}$ | $158 \pm 28$ | $\mathbf{1}$ | $165 \pm 33$ |  |
| $\mathbf{2}$ | $373 \pm 187$ | $\mathbf{2}$ | $382 \pm 99$ |  |
| $\mathbf{3}$ | $208 \pm 34$ |  | $\mathbf{3}$ | $229 \pm 35$ |
| $\mathbf{4}$ | $201 \pm 1$ |  | $\mathbf{4}$ | $369 \pm 47$ |
| $\mathbf{5}$ | $264 \pm 38$ | $\mathbf{5}$ | $230 \pm 19$ |  |
| $\mathbf{6}$ | $140 \pm 28$ | $\mathbf{6}$ | $618 \pm 321$ |  |
| $\mathbf{7}$ | $419 \pm 31$ |  | $\mathbf{7}$ | $221 \pm 69$ |
| $\mathbf{8}$ | $144 \pm 27$ | $\mathbf{8}$ | $260 \pm 33$ |  |
| $\mathbf{9}$ | $562 \pm 236$ | $\mathbf{9}$ | $1246 \pm 49$ |  |
| $\mathbf{1 0}$ | 367 | $\mathbf{1 0}$ | - |  |
| $\mathbf{1 1}$ | $381 \pm 104$ | $\mathbf{1 1}$ | $355 \pm 33$ |  |
| $\mathbf{1 2}$ | 278 | $\mathbf{1 2}$ | 150 |  |
| $\mathbf{1 3}$ | $205 \pm 5$ | $\mathbf{1 3}$ | $408 \pm 128$ |  |
| $\mathbf{1 4}$ | 138 | $\mathbf{1 4}$ | 625 |  |
| $\mathbf{1 6}$ | $165 \pm 15$ | $\mathbf{1 6}$ | $240 \pm 74$ |  |
| $\mathbf{1 7}$ | 467 | $\mathbf{1 7}$ | 300 |  |
| $\mathbf{1 8}$ | 567 | $\mathbf{1 8}$ | 200 |  |
| $\mathbf{1 9}$ | 300 | $\mathbf{1 9}$ | 300 |  |
| $\mathbf{2 0}$ | 225 | $\mathbf{2 0}$ | 350 |  |
| $\mathbf{2 1}$ | $443 \pm 105$ | $\mathbf{2 1}$ | $292 \pm 17$ |  |
| $\mathbf{2 2}$ | 489 | $\mathbf{2 2}$ | 350 |  |
| $\mathbf{2 3}$ | $660 \pm 88$ | $\mathbf{2 3}$ | $464 \pm 89$ |  |
| $\mathbf{2 4}$ | 121 | $\mathbf{2 4}$ |  |  |
| $\mathbf{2 5}$ | 220 | $\mathbf{2 5}$ | 200 |  |
| $\mathbf{2 6}$ | 350 | $\mathbf{2 6}$ |  |  |
| $\mathbf{2 7}$ | 163 | $\mathbf{2 7}$ |  |  |
| $\mathbf{2 8}$ | 243 | $\mathbf{2 8}$ | 250 |  |
| ouabain | $775 \pm 128$ | ouabain | $249 \pm 26$ |  |

atria. Safety indexes of ouabain, 23, 16, and $\mathbf{8}$ were 20, 24, 8.7, and 9.7, respectively, in right ventricular muscle (Table 5).

Other compounds, such as $\mathbf{2}$ and 13, had larger safety indexes than ouabain and $\mathbf{2 3}$ ( 100 and 65 for $\mathbf{2}$ and $\mathbf{1 3}$ versus 20 and 24 for ouabain and 23). Maximal contractions after treatment with 2 and 13 were $382 \%$ and $408 \%$, respectively. In our previous study, we found that $\mathbf{2 3}$ had a larger safety index than ouabain in vivo. ${ }^{20}$

Table 5. Safety Index of Cardiac Glycosides in Atria and Ventricular Strips

| left atria strips |  | right ventricular strips |  |
| :---: | :---: | :---: | :---: |
| cmpd | safety index | cmpd | safety index |
| 1 | $4.3 \pm 0.3$ | 1 | $18 \pm 11.1$ |
| 2 | $5.0 \pm 1.0$ | 2 | $100 \pm 60$ |
| 3 | 15 | 3 | $9.7 \pm 3.7$ |
| 4 | $7.3 \pm 0.7$ | 4 | $6.3 \pm 0.3$ |
| 5 | 10 | 5 | $7.7 \pm 3.5$ |
| 6 | $6.0 \pm 2.3$ | 6 | $5.8 \pm 1.0$ |
| 7 | $13 \pm 1$ | 7 | $20.7 \pm 10$ |
| 8 | $7.5 \pm 2.5$ | 8 | $9.7 \pm 3.3$ |
| 9 | $6.7 \pm 1.7$ | 9 | $10.7 \pm 1.8$ |
| 10 | 1000 | 10 |  |
| 11 | $11 \pm 3.7$ | 11 | $8.8 \pm 3.3$ |
| 12 | 10 | 12 | 2 |
| 13 | $6.3 \pm 3.8$ | 13 | $65 \pm 25$ |
| 14 | 5 | 14 | 20 |
| 16 | 9 | 16 | $8.7 \pm 3.0$ |
| 17 | 10 | 17 | 8 |
| 18 | 10 | 18 | 5 |
| 19 | 50 | 19 | 10 |
| 20 | 2.5 | 20 | 4 |
| 21 | 20 | 21 | 9 |
| 22 | 10 | 22 | 10 |
| 23 | 20 | 23 | 24 |
| 24 | 20 | 24 |  |
| 25 | 10 | 25 | 15 |
| 26 | 80 | 26 |  |
| 27 | 10 | 27 |  |
| 28 | 10 | 28 | 15 |
| ouabain | 20 | ouabain | 20 |

Whether $\mathbf{2}$ and $\mathbf{1 3}$ have better safety indexes than ouabain or $\mathbf{2 3}$ in animals remains to be determined.
The following structure-activity relationships were identified in these studies. Changing the $\beta-O$ - $\alpha$-rhamnose in 7 to $\beta-O-\beta$ antiarose in $\mathbf{8}$ increased PIEC $_{\text {min }}$ in atria from $3.75 \mu \mathrm{M}$ to $7.5 \mu \mathrm{M}$ and in right ventricular muscle from $3.67 \mu \mathrm{M}$ to $8.33 \mu \mathrm{M}$ (Table 3 ). Comparison of $\mathbf{3}$ with one sugar ( $\alpha-O-\alpha-$ rhamnose) and $\mathbf{4}$ with two sugars $[\alpha-O-\alpha$-rhamnosyl $(4 \rightarrow 1) \beta$-glucose] showed a decrease in $\mathrm{PIEC}_{\text {min }}$ from $4 \mu \mathrm{M}$ to $2.75 \mu \mathrm{M}$, in right ventricular muscles. Substitution of the $\mathrm{C}-18 \mathrm{CH}_{3}$ of $\mathbf{1 1}$ with $\mathrm{CH}_{2} \mathrm{OH}$ in $\mathbf{1 4}$ increased $\mathrm{PIEC}_{\text {min }}$ in atria from $0.05 \mu \mathrm{M}$ to $0.1 \mu \mathrm{M}$, but $\mathrm{PIEC}_{\text {min }}$ in right ventricular muscle remained at $0.25 \mu \mathrm{M}$ (Table 3). Similarly, changing the $\mathrm{C}-18 \mathrm{CHO}$ of $\mathbf{2 3}$ to COOH in $\mathbf{5}$ increased $\mathrm{PIEC}_{\text {min }}$ from $0.25 \mu \mathrm{M}$ to $0.42 \mu \mathrm{M}$ in atria and from $0.25 \mu \mathrm{M}$ to $1.33 \mu \mathrm{M}$ in right ventricular muscle. Finally, glycosylation of the carboxylic acid increased $\mathrm{PIEC}_{\text {min }}$ in atria from $0.42 \mu \mathrm{M}(5, \mathrm{COOH})$ to 1.42 $\mu \mathrm{M}(6, \mathrm{COOglc})$.
To confirm that, like digitalis, 23 exerts an inotropic effect through inhibition of $\mathrm{Na}^{+} / \mathrm{K}^{+}$-ATPase, the sodium pump current ( $I_{\text {pump }}$ ) was measured by the whole-cell patch clamp technique. $I_{\text {pump }}$ currents before and after $\mathbf{2 3}$ treatment were recorded. Figure 1 shows basal $I_{\text {pump }}$ (filled squares), $I_{\text {pump }}$ with 23 at $1 \mu \mathrm{M}$ (filled triangles), and $I_{\text {pump }}$ with $\mathbf{2 3}$ at $3 \mu \mathrm{M}$ (filled circles). Compound $\mathbf{2 3}$ inhibited the sodium pump current in a concentration-dependent manner. A detailed mechanistic study of the inotropic effect of $\mathbf{2 3}$ in guinea pig has been reported. ${ }^{20}$

Several noteworthy conclusions were obtained from this study. Nine new cardiac glycosides (1-9) and one aglycone (10), together with 18 known cardiac glycosides/aglycones, were isolated from A. toxicaria. The first compounds with $\mathrm{COOH}(\mathbf{5}, 7,8)$ and COOglc (6) from this plant were reported. These groups are representative units for the metabolic pathway of cardiac glycosides. A side-byside evaluation of biological activity properties of the isolated cardiac glycosides provided additional insights into the pharmacological profile of this compound class. Our data showed that $\alpha-O-$ $\alpha$-rhamnosyl $(4 \rightarrow 1)-\beta$-glucose linked at the C-3 OH resulted in better PIEC $_{\text {min }}$ in right ventricular muscle. The presence of $-\mathrm{CH}_{3}$


Figure 1. Drug effects on $I_{\text {pump }}$ of basal (filled squares), 23 at 1 $\mu \mathrm{M}$ (filled triangles), and $3 \mu \mathrm{M}$ (filled circles) treated cells.
at $\mathrm{C}-10$ was better than $-\mathrm{CH}_{2} \mathrm{OH},-\mathrm{CHO}$, and -COOH , as measured by $\mathrm{PIEC}_{\text {min }}$, in atria and right ventricular muscle. Increasing the polarity of this substituent may be beneficial in cardiac glycosides. Most significantly, 23 increased contractility and inhibited sodium pump current in guinea pig heart preparations in a concentration-dependent manner, and the safety indexes of $\mathbf{2}$, 13, and 23 were better than those of ouabain in vitro.

## Experimental Section

General Experimental Procedures. Proton NMR spectra were recorded on Bruker Avance $300(300 \mathrm{MHz})$ and AMX $400(400 \mathrm{MHz})$ spectrometers. The chemical shifts (ppm) were measured with tetramethylsilane (TMS) as internal standard and deuterated pyridine as solvent. Mass spectra were performed in the EI mode on a VG 70-250S spectrometer. The optical rotation was recorded on a JASCO DIP-370 polarimeter. Merck silica gel 60 (Merck 70-230, 230-400 mesh) was used for column chromatography. Glass sheets of silica gel $60 \mathrm{~F}_{254}$ (Merck 0.2 mm thick) were used for TLC. Melting points were measured on a Yanagimoto MP-S3 micromelting point apparatus and are uncorrected. The UV spectra were recorded on a Hitachi UV-3210 spectrophotometer, and IR spectra were determined as KBr discs on a Shimazu FTIR-8501 spectrophotometer.

Plant Material. Trunk bark of A. toxicaria was collected from Yunnan, China, and authenticated by C. S. Kuoh (Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan). A voucher specimen (NCKUWu 92012) has been deposited in the Herbarium of National Cheng Kung University, Tainan, Taiwan, R.O.C.

Extraction and Isolation. The trunk bark of A. toxicaria ( 6.0 kg ) was cut into small pieces and extracted with $95 \% \mathrm{EtOH}(20 \mathrm{~L} \times 3)$. Evaporation of the solvent under reduced pressure provided 239.0 g of crude extract, which was partitioned between $\mathrm{CHCl}_{3}-\mathrm{H}_{2} \mathrm{O}$ and $n-\mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}$, successively, to yield $\mathrm{CHCl}_{3}(65.1 \mathrm{~g}), n-\mathrm{BuOH}(100.2$ $\mathrm{g})$, and $\mathrm{H}_{2} \mathrm{O}(73.7 \mathrm{~g})$ fractions. The $\mathrm{CHCl}_{3}$ fraction was subjected to silica gel CC using increasing polarity mixtures of $n$-hexane-acetone as eluant to give 14 fractions. Fraction 6 was chromatographed on silica gel using diisopropyl ether $-\mathrm{MeOH}(40: 1)$ to obtain $10(8.7 \mathrm{mg})$ and $\mathbf{1 6}$ ( 103.2 mg ). Fraction 7 was chromatographed on silica gel and eluted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(15: 1)$ to give $13(6.6 \mathrm{mg})$ and $\mathbf{1 8}(7.0 \mathrm{mg})$. Fraction 8 was chromatographed on silica gel using EtOAc-MeOH (20:1) to obtain $5(37.6 \mathrm{mg}), \mathbf{1 5}(3.2 \mathrm{mg})$, and $27(8.8 \mathrm{mg})$, successively. Fraction 9 was chromatographed on silica gel using EtOAc-MeOH (20:1) to afford 23 ( 21.4 mg ). Fraction 10 was chromatographed on silica gel using EtOAc-MeOH (20:1) to yield 17 ( 117.2 mg ).

The $n$-BuOH fraction was subjected to Diaion HP-20 CC eluting with a $\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ gradient system to give 12 fractions. Fraction 5 was chromatographed on silica gel using $\mathrm{CHCl}_{3}-\mathrm{MeOH}(9: 1)$ to obtain $7(34.7 \mathrm{mg}), \mathbf{8}(147.4 \mathrm{mg}), \mathbf{9}(1.5 \mathrm{mg}), 24(58.9 \mathrm{mg}), \mathbf{2 5}(11.0 \mathrm{mg}), 26$ $(4.3 \mathrm{mg})$, and $28(7.3 \mathrm{mg})$, successively. Fraction 6 was chromatographed on silica gel using $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (9:1) to obtain 25 (118.4 mg ). Fraction 7 was chromatographed on silica gel using $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(9: 1: 0.05)$ to obtain 21 (11.4 mg). Fraction 8 was chromatographed on silica gel using $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (9:1:0.05) to afford $\mathbf{2}(12.3 \mathrm{mg}), \mathbf{3}(112.3 \mathrm{mg}), \mathbf{4}(12.2 \mathrm{mg}), \mathbf{6}(5.9 \mathrm{mg}), \mathbf{1 2}(9.1$ $\mathrm{mg}), \mathbf{1 4}(6.1 \mathrm{mg}), \mathbf{1 7}(431.2 \mathrm{mg}), \mathbf{1 8}(4.3 \mathrm{mg}), \mathbf{2 0}(5.9 \mathrm{mg}), \mathbf{2 1}(79.8$ mg ), and $22(18.3 \mathrm{mg})$. Fraction 9 was chromatographed on silica gel
using $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (9:1:0.05) to obtain $\mathbf{1 1}$ ( 7.6 mg ), $\mathbf{1 7}$ (12.5 $\mathrm{mg}), \mathbf{1 9}(19.7 \mathrm{mg})$, and $20(14.3 \mathrm{mg})$. Fraction 10 was chromatographed on silica gel using $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (9:1:0.05) to obtain $\mathbf{1}$ (9.8 $\mathrm{mg}), \mathbf{1 1}(3.3 \mathrm{mg}), \mathbf{1 9}(10.2 \mathrm{mg}), 20(3.5 \mathrm{mg})$, and $27(13.5 \mathrm{mg})$.

The water fraction was directly subjected to Diaion HP-20 CC eluting with water containing increasing proportions of MeOH to give 12 fractions. Fraction 8 was chromatographed on a Sephadex LH-20 column using mixtures of $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ of increasing polarity to obtain $25(20.2 \mathrm{mg})$ and $26(1.3 \mathrm{mg})$. Fraction 9 was chromatographed on Sephadex LH-20 eluting with water containing increasing proportions of MeOH to give $\mathbf{4}(26.4 \mathrm{mg}), \mathbf{1 7}(43.2 \mathrm{mg})$, and $21(26.8 \mathrm{mg})$.

Antiaroside A (1): colorless needles ( $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}\right) ; \mathrm{mp} 184-186$ ${ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}-24.4(c 0.09, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 213$ (4.67) nm ; IR (KBr) $v_{\text {max }} 3450,2939,1738,1622,1450,1383,1078,1038$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 1 and 2; FABMS m/z 559 [M $+23]^{+}(16), 537$ (47), 391 (29), 373 (43), 355 (100), 337 (54), 277 (47), 185 (98); HRFABMS $m / z 537.3063[\mathrm{M}+1]^{+}$(calcd for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{O}_{9}$, 537.3064).

Antiaroside B (2): colorless syrup; $[\alpha]^{25}{ }_{\mathrm{D}}-20.09$ (c $0.12, \mathrm{MeOH}$ ); UV (MeOH) $\lambda_{\text {max }}(\log \varepsilon) 218(4.32) \mathrm{nm}$; IR (KBr) $v_{\text {max }} 3400,2936$, 1738, 1730, 1655, 1067, $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 1 and 2; FABMS $m / z 737[\mathrm{M}+39]^{+}$(3), $721[\mathrm{M}+23]^{+}$(3), 699 (2), 519 (3), 356 (5), 185 (100), 147 (25); HRFABMS $m / z 737.8260[\mathrm{M}+$ $39]^{+}$(calcd for $\mathrm{C}_{35} \mathrm{H}_{54} \mathrm{KO}_{14} 737.8262$ ).
Antiaroside C (3): colorless powder ( $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}\right)$; mp 231-232 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}-11.31(c 1.03, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 213(4.17)$ nm; IR (KBr) $v_{\text {max }} 3440,2934,1734,1715,1618,1454,1344,1198$, $1057 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 1 and 2; FABMS $\mathrm{m} / \mathrm{z}$ $551[\mathrm{M}+1]^{+}(25), 405(13), 387$ (35), 369 (36), 351 (18), 341 (22), 323 (26), 185 (100), 179 (12), 147 (54); HRFABMS m/z 551.2855 [M $+1]^{+}$(calcd for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{O}_{10}, 551.2856$ ).

Antiaroside D (4): colorless syrup; $[\alpha]^{25}{ }_{\mathrm{D}}-21.73$ (c 0.39, MeOH); $\mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 213(4.37) \mathrm{nm}$; IR $(\mathrm{KBr}) \nu_{\max } 3400,2932$, 1734, 1647, 1456, 1067, $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 1 and 2; FABMS $m / z 751[\mathrm{M}+39]^{+}$(7), 549 (2), 403 (6), 387 (6), 369 (6), 359 (4), 342 (6), 341 (8), 323 (12), 207 (16), 185 (100), 179 (3), 163 (7), 147 (19); HRFABMS $m / z 751.2943[\mathrm{M}+39]^{+}$(calcd for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{KO}_{15}, 751.2943$ ).

Antiaroside E (5): colorless syrup; $[\alpha]^{25}$ D -29.07 (c $\left.0.25, \mathrm{MeOH}\right)$; UV (MeOH) $\lambda_{\text {max }}(\log \varepsilon) 216(4.40) \mathrm{nm}$; IR (KBr) $\nu_{\max } 3460,2936$, 1738, 1670, 1453, 1076, $1036 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 1 and 2; FABMS m/z $551[\mathrm{M}+1]^{+}(30), 507$ (10), 462 (17), 417 (38), 387 (23), 359 (15), 341 (26), 323 (35), 315 (57), 277 (25), 185 (100), 147 (63); HRFABMS m/z $551.2856[\mathrm{M}+1]^{+}$(calcd for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{O}_{10}, 551.2856$ ).

Antiaroside F (6): colorless syrup; $[\alpha]^{25}{ }_{\mathrm{D}}-19.61$ (c 0.06, MeOH); $\mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 216(4.42) \mathrm{nm}$; IR $(\mathrm{KBr}) \nu_{\max } 3400,1726$, 1655, 1647, 1642, 1545, 1533, $1460 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 1 and 2; FABMS $m / z 751[\mathrm{M}+39]^{+}$(7), 713 (3), 550 (3), 534 (2), 490 (3), 241 (6), 185 (100), 147 (6); HRFABMS $m / z 751.2943$ $[\mathrm{M}+39]^{+}\left(\right.$calcd for $\left.\mathrm{C}_{35} \mathrm{H}_{53} \mathrm{O}_{15}, 751.2945\right)$.

Antiaroside G (7): colorless syrup; $[\alpha]^{25}$ D +3.07 ( $c 0.3472, \mathrm{MeOH}$ ); UV (MeOH) $\lambda_{\text {max }}(\log \varepsilon) 218(4.67) \mathrm{nm}$; IR (KBr) $v_{\max } 3440,2941$, 1738, 1726, 1514, $1036 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 1 and 2; FABMS m/z $583[\mathrm{M}+1]^{+}$(11), 437 (6), 383 (3), 277 (9), 241 (7), 207 (9), 185 (100), 149 (18), 147 (6), 115 (116); HRFABMS $m / z$ $583.2752[\mathrm{M}+1]^{+}$(calcd for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{O}_{12}, 583.2754$ ).

Antiaroside H (8): colorless syrup; $[\alpha]^{25}{ }_{\mathrm{D}}+0.77$ (c $\left.1.47, \mathrm{MeOH}\right)$; $\mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 219(4.20) \mathrm{nm}$; IR (KBr) $v_{\text {max }} 3420,2970$, 2941, 2878, 1739, 1710, 1618, 1450, 1416, 1377, 1313, 1030, $993 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 1 and 2; FABMS $m / z 583[\mathrm{M}+1]^{+}$ (21), 437 (25), 401 (8), 383 (10), 337 (11), 185 (100), 147 (28), 129 (33); HRFABMS m/z $583.2753[\mathrm{M}+1]^{+}$(calcd for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{O}_{12}$, 583.2754).

Antiaroside I (9): colorless syrup; $[\alpha]^{25}{ }_{\mathrm{D}}-28.22(c 0.08, \mathrm{MeOH})$; $\mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 217$ (4.17) nm; IR (KBr) $\nu_{\max } 3430$, 2934, 1742, 1647, 1454, 1364, 1225, 1049, $987 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 1 and 2; FABMS $m / z 523[\mathrm{M}+1]^{+}$(28), 360 (11), 359 (25), 341 (30), 323 (14), 225 (39), 185 (100), 147 (27), 131 (56), 129 (36); HRFABMS m/z $523.2908[\mathrm{M}+1]^{+}$(calcd for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{O}_{9}$, 523.2907).

Antiarotoxinin A (10): colorless powder; $[\alpha]^{25}$ D +30.96 (c 0.087, $\mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon) 212(3.95) \mathrm{nm}$; IR $(\mathrm{KBr}) \nu_{\text {max }} 3304$, 2943, 1761, 1643, 1275, $1036 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables 1 and 2; EIMS m/z $408\left(\mathrm{M}^{+}, 2\right), 390(9), 372$ (25), 354 (26), 318 (100),

219 (29), 201 (43), 145 (21), 124 (39), 121 (28), 111 (37), 109 (26), 107 (36), 93 (40), 91 (46), 81 (55), 55 (60); HREIMS m/z 408.2513 $[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{6}, 408.2511$ ).

Assay Methods of Positive Inotropic Action and Arrhythmogenic Action. Adult guinea pigs ( $300-500 \mathrm{~g}$ ) were anesthetized with pentobarbital ( $25 \mathrm{mg} / \mathrm{kg}$, ip). The heart was excised, and retrograde coronary perfusion was performed with normal Tyrode's solution containing (in mM) $\mathrm{NaCl} 137, \mathrm{KCl} 5.4, \mathrm{CaCl}_{2} 2, \mathrm{MgCl}_{2} 1.1, \mathrm{NaH}_{2} \mathrm{PO}_{4}$ $0.33, \mathrm{NaHCO}_{3} 11.9$, and glucose 11 through a coronary artery. Tyrode's solution was maintained at $37^{\circ} \mathrm{C}$ and continuously aerated with $95 \%$ $\mathrm{O}_{2}+5 \% \mathrm{CO}_{2}(\mathrm{pH} 7.2-7.4$ under these conditions). Left atria and right ventricular muscles were separated from the heart. One end of the muscle was attached to a rigid support, and the other end was attached to a transducer in the 10 mL bath. Each tissue was placed under 1 g of tension and stimulated at 2 Hz , with pulses of 2 ms duration and amplitude twice the threshold. Following stabilization for about 60 min , drugs were cumulatively added. The positive inotropic effects ( $\mathrm{PIE}_{\text {max }}$ ) and safety indexes were studied according to the methods described previously. ${ }^{20,21}$ Briefly, the minimal positive inotropic effective concentration $\left(\mathrm{PIEC}_{\text {min }}\right)$ to increase myocardial contraction and the arrhthymogenic concentration to induce arrhythmia in these isolated cardiac preparations were measured. The maximal positive inotropic effect was determined at a concentration level immediately before the occurrence of cardiac arrhythmia, and the safety index was then measured from the ratio of arrhthymogenic concentration to minimal effective positively inotropic concentration.

Electrophysiological Recording of Malayoside (23). Cardiomyocytes were isolated by using the enzymatic method previously described. ${ }^{20}$ Adult male guinea pigs ( $200-250 \mathrm{~g}$ ) were intraperitoneally injected with sodium pentobarbital ( $25 \mathrm{mg} / \mathrm{kg}$ ) plus heparin ( $16 \mathrm{mg} /$ $\mathrm{kg})$. After the guinea pig was deeply anesthetized, the heart was excised and the coronary artery was antegradely perfused with oxygenated $\mathrm{Ca}^{2+}$ free HEPES solution containing (in mM ) NaCl 137 , glucose 22, HEPES $6, \mathrm{MgSO}_{4} 1.2, \mathrm{KH}_{2} \mathrm{PO}_{4} 1.2$, and $\mathrm{KCl} 5.4 ; \mathrm{pH}$ was adjusted to 7.4 using NaOH . The heart was then perfused with the same solution containing $0.4 \mathrm{mg} / \mathrm{mL}$ collagenase (type II, Sigma Chemical Co., St. Louis, MO), $0.06 \mathrm{mg} / \mathrm{mL}$ protease (type XIV, Sigma), and bovine serum albumin $(1 \mathrm{mg} / \mathrm{mL})$.

After 4-5 min of digestion, enzymes were washed out in Kruftbruhe solution containing (in mM ) taurine 10 , oxylate 10 , glutamate $70, \mathrm{KCl}$ $25, \mathrm{KH}_{2} \mathrm{PO}_{4} 10$, glucose 11 , EGTA $0.5 ; \mathrm{pH}$ was adjusted to 7.4 using KOH . The ventricles were then chopped, resuspended under gentle mechanical agitation, and stored in Kruftbruhe solution at room temperature.

The whole-cell patch clamp technique was used to record ionic currents in voltage clamp mode with a Dagan 8900 voltage clamp amplifier (Dagan Co., Minneapolis, MN). A droplet of the cell suspension was placed in a chamber mounted on the stage of an inverted microscope (Nikon, Diaphot, Japan). After settling, cells were finally exposed to the bath solution containing (in mM ) $\mathrm{NaCl} 137, \mathrm{KCl} 5.4$, $\mathrm{MgCl}_{2} 2.9$, HEPES 6, glucose 22, $\mathrm{NaH}_{2} \mathrm{PO}_{4} 0.33, \mathrm{BaCl}_{2} 2$, and CdCl 0.2 ; pH was adjusted to 7.4 using NaOH . For the measurement of $I_{\text {pump }}$, a pipet was filled with the internal solution containing (mM) CsOH $80, \mathrm{NaOH} 50, \mathrm{MgCl}_{2} 3$, TEA-Cl 20, aspartic acid 100, HEPES 10 , ATP-Mg 10, GTP-Na ${ }_{3} 0.2$, glucose 5.5 , Na-creatine phosphate 5 , and pyruvic acid 5; pH was adjusted to 7.2 using CsOH . Heat-polished glass electrodes (tip resistances about $1 \mathrm{M} \Omega$ when filled with pipet internal solution) were used. After rupture of the patch, the holding potential was set at -40 mV to inactivate $\mathrm{Na}^{+}$channels and the cell interior was allowed to equilibrate 5 min with the pipet solution. Then membrane currents were elicited by voltage ramps from +60 mV to -120 mV . Junction potentials were zeroed before the formation of the membrane-pipet seal in the bath solution. The series resistance was electronically compensated by about $80 \%$ to minimize the duration of the capacitive surge on the current recorded and the voltage drop across the pipet. Currents were elicited and acquired using a Digidata 1200 data acquisition system controlled using pClamp software (Axon Instruments). Recordings were lowpass filtered at 10 kHz and stored on the hard disk of a computer.

Acknowledgment. The authors acknowledge financial support from the National Science Council, Taiwan, Republic of China, awarded to T.S.W. Partial support was received from NIH Grant No. CA-17625 awarded to K.H.L.

Supporting Information Available: NMR spectra of new compounds $\mathbf{1 - 1 0}$ and structures of known compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

## References and Notes

(1) Philippe, G.; Angenot, L. J. Ethnopharmacol. 2005, 100, 85-91.
(2) Bisset, N. G. J. Ethnopharmacol. 1979, 1, 325-384.
(3) Carter, C. A.; Forney, R. W.; Gray, E. A.; Gehring, A. M.; Schneider, T. L.; Young, D. B.; Lovett, C. M., Jr.; Scott, L. Tetrahedron 1997, 53, 13557-13566, and references therein.
(4) Fu, L. K.; Jin, J. M. China Plant Red Data Book, Rare and Endangered Plants; Science Press: Beijing, 1992; Vol. 1.
(5) Wehrli, W.; Schindler, O.; Reichstein, T. Helv. Chem. Acta 1962, 45, 1183-1205, and references therein.
(6) Kopp, B.; Bauer, W. P.; Bernkop-Schnurch, A. J. Ethnopharmacol. 1992, 36, 57-62.
(7) Carter, C. A.; Gray, E. A.; Schneider, T. L.; Lovett, C. M., Jr.; Scott, L.; Messer, A. C.; Richardson, D. P. Tetrahedron 1997, 53, 1695716968.
(8) Robinson, J. A.; Ling, H. W. Br. J. Pharmacol. Chemother. 1953, 8, 79-82.
(9) Fujimoto, Y.; Suzuki, Y.; Kanaiwa, T.; Amiya, T.; Hoshi, K.; Fujino, S. J. Pharm. Dyn. 1983, 6, 128-135.
(10) Scott, A. I. Interpretation of the Ultraviolet Spectra of Natural Products; Pergamon Press: New York, 1964; p 235.
(11) Lei, Z. H.; Yahara, S.; Nohara, T.; Tai, B. S.; Xiong, J. Z.; Ma, Y. L. Chem. Pharm. Bull. 2000, 48, 290-292.
(12) Cai, M. S.; Li, Z. J. Carbohydrate Chemistry; Chemical Industry Press: Beijing, 2006; p 373.
(13) Muehlradt, P.; Weiss, Ek.; Reichstein, T. Helv. Chem. Acta 1964, 47, 2164-2186.
(14) Juslen, C. Soc. Sci. Fennica, Commentationes Phys. 1962, Math 27, No. 2, p 61.
(15) Wehrli, W. Helv. Chem. Acta 1962, 45, 1206-1211.
(16) Muehlradt, P.; Weiss, Ek.; Reichstein, T. Ann. Chem. 1965, 685, $253-$ 261.
(17) Brandt, R.; Kaufmann, H.; Reichstein, T. Helv. Chem. Acta 1966, 49, 2469-2481.
(18) Makarevich, I. F.; Kolesnikov, D. G.; Belokon, V. F. Chem. Nat. Compd. 1974, 10, 616-618.
(19) Khatter, J. C.; Agbanyo, M.; Hoeschen, R. J.; Navaratnam, S.; Bains, R. J. Pharmacol. Exp. Ther. 1986, 239, 206-210.
(20) Lee, A. S.; Wu, T. S.; Su, M. J. Eur. J. Pharmacol. 2008, 580, 224 230.
(21) Kass, R. S.; Lederer, W. J.; Tsien, R. W.; Weingart, R. J. Physiol. (London) 1978, 281, 187-208.
NP9005212


[^0]:    * To whom correspondence should be addressed. Tel: 886-6-2747538. Fax: 886-6-2740552. E-mail: tswu@mail.ncku.edu.tw.
    ${ }^{\dagger}$ National Cheng Kung University.
    "Present address: Department of Biotechnology, National Formosa University, Yunlin, Taiwan, Republic of China.
    ${ }^{\S}$ National Taiwan University.
    ${ }^{*}$ Graduate Institute of Pharmaceutical Chemistry, China Medical University.
    ${ }^{\triangle}$ Chinese Academy of Science.
    \# University of North Carolina.
    ${ }^{\perp}$ Department of Pharmacy, China Medical University.

[^1]:    ${ }^{a} \delta$ values in pyridine- $d_{5}(100 \mathrm{MHz}) .{ }^{b} \delta$ values in pyridine- $d_{5}(75 \mathrm{MHz})$.

